ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Synthesis and luminescence properties of Bi³⁺-doped YVO₄ phosphors

Jihong Li, Jie Liu, Xibin Yu*

Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China

ARTICLE INFO

Article history: Received 13 June 2011 Accepted 23 July 2011 Available online 29 July 2011

Keywords: Luminescence YVO₄:Bi³⁺ Phosphors

ABSTRACT

 $YVO_4:Bi^{3+}$ phosphors have been prepared by a convenient high-temperature solid-state method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) technologies are used to study the luminescence properties of $YVO_4:Bi^{3+}$ phosphors. The emission and excitation spectra of Bi^{3+} in the YVO_4 lattice have been investigated at room temperature. The excitation band peaks at 330 nm in a region among 250–400 nm, and the emission spectrum exhibits an intense yellowish-white broad emission centered at about 543 nm covering from 400 nm to 800 nm. The full width at half maximum (FWHM) is about 144 nm. The color coordinates of the as-synthesized $YVO_4:Bi^{3+}$ phosphors are in a range of x=0.358-0.374, y=0.482-0.496. The dependence of the luminescence intensity on Bi^{3+} concentrations and heat treatment condition has also been discussed. In addition, we found that a little amount of flux NH_4CI could enhance the Bi^{3+} luminescence intensity.

© 2011 Elsevier B.V. All rights reserved.

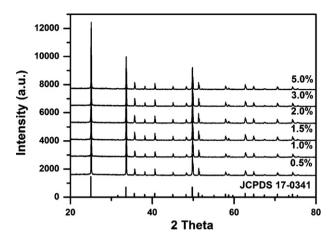
1. Introduction

Many papers on the luminescence properties of the bismuth have been published [1-4]. Bismuth can exist in materials in different valence states, such as 0, +1, +2, +3, +5, or even mixed valence states of +1 and +5. In the past few decades, some researchers have investigated the luminescence properties of Bi³⁺or Bi²⁺-doped crystals and glasses [5–8]. Recently, bismuth-doped multicomponent glasses can be used for optical amplification with super-broadband emission in the near-infrared range [9,10]. In all of these valence states only Bi3+ is normally most stable in most host materials. The luminescent properties of Bi³⁺ ions and energy transfer among Bi³⁺ ions or from Bi³⁺ to another activator have been discussed profoundly [11-13]. Usually, the emission peaks of Bi3+ occur in the ultraviolet, green, or even red wavelength regions with variation of host materials. For example, red luminescence is observed in Bi₄Ge₃O₁₂ at low temperature [14], while in other materials such as GaBO₃:Bi³⁺ or La₂SO₆:Bi³⁺, UV emission is observed [15]. In LnNbO₄:Bi³⁺ the Bi³⁺ shows a blue emission band [16].

It is well-known that yttrium orthovanadate (YVO₄) is a good lattice which exhibits a high luminescence efficiency [17,18]. Bi³⁺ can be used as not only an activator but also a sensitizer of luminescence. Many works have been done on the energy transfer from Bi³⁺ ion to another activator such as Eu³⁺, Dy³⁺, Sm³⁺ in YVO₄ host lattice when Bi³⁺ acts as a sensitizer [19,20]. However, few reports solely discussed the luminescence properties of

 ${\rm Bi^{3+}}$ as an activator in YVO₄ host lattice. In this paper YVO₄: ${\rm Bi^{3+}}$ phosphors were synthesized by a convenient high-temperature solid-state method. ${\rm Bi^{3+}}$ exhibits an intense yellowish-white broad emission in YVO₄ host lattice. We systematically study the synthesis, luminescence properties and the application of YVO₄: ${\rm Bi^{3+}}$ phosphors as well as flux NH₄Cl effect on the ${\rm Bi^{3+}}$ luminescence intensity.

2. Experimental


2.1. Synthesis of YVO₄:Bi³⁺ phosphors

All materials were purchased from commercial sources (analytical grade) and used without further treatment. The mixture of Y_2O_3 , NH_4VO_3 and Bi_2O_3 were weighted essentially in a stoichiometric proportion. After the mixture was ground sufficiently, the powder was placed in the alumina crucible and transferred into the furnace. The samples were heated at a rate of $5\,^\circ\text{C/min}$ up to different temperatures from 800 to $1200\,^\circ\text{C}$ and then kept there for $4\,\text{h}$ before being taken out of the furnace. When cooled to room temperature, the samples were milled into powders for the measurements and applications.

2.2. Characterization

All experiments were taken at room temperature. X-ray powder diffraction (XRD) pattern was recorded by using a Japan Regaku D/max çA X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation (λ = 1.5418 Å) irradiated with a scanning rate of 4° min⁻¹. The morphology of the phosphors was studied by scanning electron microscopy (HITACHI S4800 operated at 3 kV). The optical properties of as-prepared samples were investigated by photoluminescence (PL) and photoluminescence excitation (PLE) spectra, which were taken on a VARIAN Cary-Eclipse 500 fluorescence spectrophotometer equipped with a 60 W xenon lamp as the excitation source.

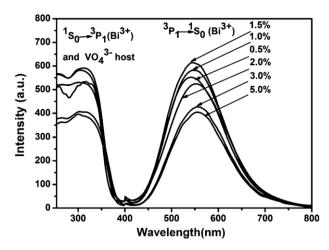
^{*} Corresponding author. Tel.: +86 21 64324528; fax: +86 21 64322511. E-mail address: xibinyu@shnu.edu.cn (X. Yu).

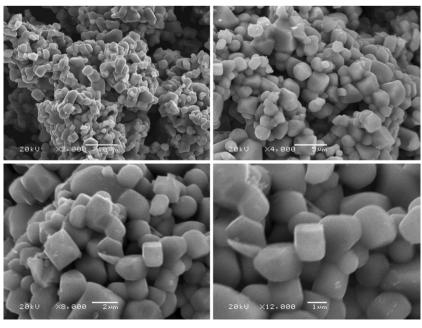
Fig. 1. The XRD patterns of $Y_{1-x}Bi_xVO_4$ (x = 0.005, 0.01, 0.015, 0.02, 0.03, 0.05) Phosphors prepared at 1000 °C for 4 h.

3. Results and discussion

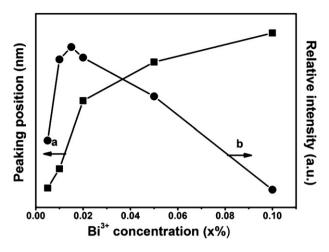
3.1. Preparation of phosphors YVO₄:Bi³⁺

Fig. 1 shows the XRD patterns of $Y_{1-x}Bi_xVO_4$ (x=0.005, 0.01,0.015, 0.02, 0.03, 0.05) powers synthesized at 1000 °C for 4 h. According to Committee on Power Diffraction Standards (JCPDS) card 17-0341, YVO₄ has a tetragonal structure and its unit cell parameters are $a = 7.119 \,\text{Å}$, $b = 7.119 \,\text{Å}$, $c = 6.289 \,\text{Å}$. As shown in Fig. 1, most all of the diffraction peaks of YVO₄:Bi³⁺ powers can be indexed to tetragonal crystalline phase YVO₄ with lattice contents a = b = 7.12 Å and c = 6.29 Å (JCPDS 17-0341). Only a small shift was observed because of the introduction of Bi³⁺ ions. The strong peaks indicate the high crystalline of the as-prepared products, which is very beneficial for obtaining bright luminescence. Because of the introduction of Bi³⁺ ions, the (200) diffraction peaks at $2\theta = 25^{\circ}$ shift slightly toward lower 2θ values with respect to the standard card. This observation results from the fact that the ionic radius of Y^{3+} (0.088 nm) is smaller than that of Bi^{3+} (0.196 nm) [21]. Obviously, the introduction of Bi3+ ions did not influence the crystal




Fig. 3. Room temperature PL (under 330 nm excitation) and PLE spectra of YVO_4 : Bi^{3+} at different concentrations.

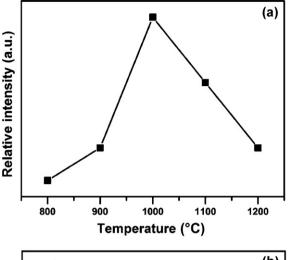
structure of the host matrix, indicating that we have synthesized successfully the YVO₄ host lattice.

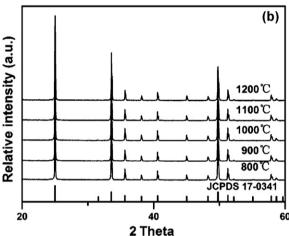

Fig. 2 shows the SEM micrographs of YVO₄:1.5% Bi³⁺ powders obtained at 1000 °C for 4 h. From the pictures we can observe that the particles have a very narrow size distribution with a slight agglomerate phenomenon, and the edge angles of the grains are smooth. Their sizes are in the range of 1–2 μ m. Such morphology can be useful for the application of the phosphors.

3.2. The factors influencing the luminescence properties of the Bi^{3+} -doped YVO₄ phosphors

The luminescence properties of the $\rm Bi^{3+}$ -doped YVO₄ phosphors were examined. Fig. 3 presents the PLE and PL spectra of YVO₄: $\rm Bi^{3+}$ phosphors at different concentrations sintered at $1000\,^{\circ}\rm C$ for 4 h. Strong yellowish-white broad emission band centered at about 543 nm is observed that results from the $^3\rm P_1-^1\rm S_0$ transition. The excitation spectrum is very broad extending from 254 nm to 400 nm due to the $\rm Bi^{3+1}\rm S_0-^3\rm P_1$ transition and $\rm VO_4^{3-}$ host. The trivalent $\rm Bi^{3+}$ ion has a configuration $\rm 6s^2$ and belongs to ions

Fig. 2. Scanning electron microscope micrographs of YVO₄:1.5% Bi³⁺ powders obtained at 1000 °C for 4 h.




Fig. 4. (a) The relationship between Bi³⁺ concentration and emission peaks. (b) The dependence of emission intensity on Bi³⁺ concentration.

with ns² configuration. Rare earth doped-YVO₄ phosphors show line emission where transitions among the 4f⁶-electron energy levels come up because the shielding effects of outer electrons minimize the perturbing influence of the crystal field. However, YVO₄ phosphors activating with ions show broad emission bands which involve s-, p-, or d-electrons where considerable perturbation occurs. Hence, under ultraviolet excitation we observe a single intense broad emission band extending from 400 nm to 800 nm corresponding to the allowed ${}^3P_1 - {}^1S_0$ transition of Bi³⁺ ions. The ground state of the free Bi³⁺ ion is 1S_0 and the excited states are 3P_0 , ³P₁, ³P₂, and ¹P₁ in order of increasing energy [1]. As an activator, excitation usually occurs from the ¹S₀ ground state to the ³P₁ or ${}^{1}P_{I}$ excited state because the ${}^{1}S_{0}-{}^{3}P_{0}$ and ${}^{1}S_{0}-{}^{3}P_{2}$ transitions are strongly forbidden. The emission of Bi³⁺ ions originates from the ³P₀ state at low temperatures, while at higher temperatures the emission occurs mainly from the ³P₁ level, in which transition is allowed by spin-orbit mixing of the ${}^{3}P_{1}$ and ${}^{1}P_{1}$ states.

Fig. 4(a) shows the relationship between Bi³⁺ concentration and emission peaks. With the increasing of Bi³⁺concentration, the emission peaks move slightly toward longer wavelength, namely, about from 543 nm to 555 nm. As mentioned earlier, with the change of the distance among Eu²⁺ ions, the probability of energy transfer from Eu²⁺ ions at higher levels of 5d to those at the lower 5d levels increases which makes it possible to shift the emission peak to the longer wavelength with Eu²⁺concentration increasing [22]. In YVO₄ lattice the Bi³⁺ may show the same characteristics which may be aroused because of the Bi³⁺ 6s6p \rightarrow 6s₂ orbit transition.

The concentration quenching of the Bi³⁺ ions was studied on powder samples. The intensity of ${}^3P_1 - {}^1S_0$ transition of Bi $^{3+}$ ions in YVO₄ host is shown in Fig. 4(b) as a function of the Bi³⁺ concentration. Bi³⁺ was substituted for Y³⁺ in YVO₄ lattice in various concentrations. The incorporated amount of Bi³⁺ was always lower than the weighted amount of Bi³⁺, resulting from the loss by vaporization. In view of problems of this kind it was not possible to obtain a complete range of compounds with continuously varying Bi³⁺ concentration. In this paper, all the Bi³⁺ concentrations were calculated on the basis of theory values. We observed that the concentration quenching started between 0.5% and 2.5% Bi³⁺ ions. The energy transfer between Bi³⁺ ions can be expected to be very efficient in YVO₄ lattice. Former works have investigated about the concentration quenching of Bi³⁺ ions in some hosts. The critical concentration of Bi³⁺ ions for concentration quenching is always lower though there is a little difference for differing hosts. Kellendonk proposed that the concentration quenching in YA13B4O12 started between 0.5% and 1% Bi3+ ions [1]. In YVO4 lattice, with

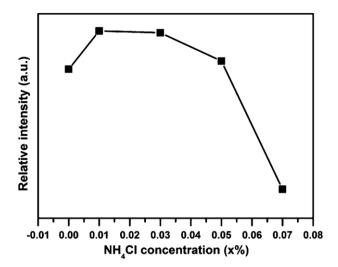
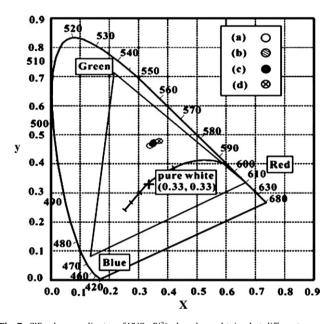


Fig. 5. (a) The dependence of emission intensity of $YVO_4:1.5\%$ Bi³⁺ on the sintering temperatures. (b) The XRD patterns of $YVO_4:1.5\%$ Bi³⁺ phosphors prepared at different temperatures.


the increasing of Bi³⁺ concentration, the Bi³⁺ emission intensity increase because of the efficient $VO_4{}^3$ –Bi³⁺ energy transfer. The emission intensity reaches its maximum at x=0.015. When Bi³⁺ ion concentration is more than 1.5 mol%, efficient Bi³⁺–Bi³⁺energy transfer would take place due to the near distance between Bi³⁺ ions, resulting in the concentration quenching effect.

There are several factors which may influence the ${\rm Bi^{3^+}}$ luminescence intensity in YVO₄ host. We found that the intensity of the ${\rm Bi^{3^+}}$ emission in YVO₄ host was obviously temperature dependent. From Fig. 5(a) we can observe that $1000\,^{\circ}{\rm C}$ is the optimum sintering temperature for their preparation. The as-synthesized powders obtained after heat treatment at different temperatures were characterized by XRD (Fig. 5(b)). From Fig. 5(b), the diffraction peaks of all powers obtained at different temperatures can be indexed to tetragonal crystalline phase YVO₄ (JCPDS17-0341). The peak position did not change with the change of heating temperatures, but the peak intensity increased slightly at $1000\,^{\circ}{\rm C}$, indicating the best crystalline at $1000\,^{\circ}{\rm C}$. However, the diffraction peak intensity did not change obviously, so we deduce that vaporization at higher temperatures could make the ${\rm Bi^{3^+}}$ luminescence intensity come down because the ${\rm Bi^{3^+}}$ concentration decrease.

The flux NH₄Cl on the effect of fluorescence intensity of YVO₄:1.5% Bi³⁺ phosphors also was investigated. From Fig. 6 we found that when the flux NH₄Cl is 1–5% of the whole samples quality the Bi³⁺ emission intensity can increase clearly. The optimum content of NH₄Cl is about 1% of the whole sample mass which

Fig. 6. The flux NH $_4$ Cl on the effect of luminescence intensity of YVO $_4$:1.5% Bi $^{3+}$ phosphors obtained at 1000 $^{\circ}$ C for 4 h.

Fig. 7. CIE color coordinates of YVO₄:Bi³⁺ phosphors obtained at different concentrations: (a) 0.5% Bi³⁺ (0.359, 0.482), (b) 1% Bi³⁺ (0.364, 0.487), (c) 1.5% Bi³⁺ (0.366, 0.491) and (d) 3% Bi³⁺ (0.374, 0.496).

increases the relative emission intensity of the YVO₄:1.5% Bi³⁺ by about 6%. The results show that the use of NH₄Cl as flux can help to crystallize the phosphor, and enhances the intensities of the excitation and emission spectra of the YVO₄:1.5% Bi³⁺ phosphors. The flux mechanism for the improvement of the photoluminescence characteristics of the YVO₄:1.5% Bi³⁺ phosphors may result from the fact that NH₄Cl melts at a low temperature to form liquid phase, which accelerates the velocity of the chemical reaction, prompting the Bi³⁺ ions to enter the YVO₄ lattice through grain boundary diffusion and improving the morphology of particles, endowing them with smooth surfaces and well-proportioned distribution, resulting in the improvement of the photoluminescence [23].

Emission color was analyzed with the help of CIE (Commission Internationale de l' Eclairage) chromaticity coordinates diagram. The color coordinates of the as-synthesized YVO₄:Bi³⁺ phosphors are in a range of x = 0.358 - 0.374, y = 0.482 - 0.496. The color coordinates of $Y_{1-x}Bi_xVO_4$ (x = 0.005, 0.01, 0.015, 0.03) are shown in detail in Fig. 7. We found that with the increasing of Bi³⁺concentration the color coordinates move toward top right corner, namely the color becomes yellowish-green. It is clear from the figure that color coordinates of the as-synthesized samples are located near to white region on the chromaticity diagram.

4. Conclusions

The yellowish-white YVO₄:Bi³⁺ phosphors were synthesized by a convenient high-temperature solid-state method, 1.5% Bi³⁺ the optimum concentration and $1000\,^{\circ}\text{C}$ being the optimum sintering temperature for their preparation. When the flux NH₄Cl is 1% of the whole samples quality the Bi³⁺ emission intensity can increase by about 6%. The Bi³⁺ shows an intense wide emission band with FWHM of 144 nm and broad excitation band ranging form 200 to 370 nm, so they may be hopeful in the use of high pressure mercury lamp and tricolor conversion phosphors. In addition, Bi³⁺-doped YVO₄ phosphors, which have a wide emission band including the blue region and the green region ranging from 400 nm to 800 nm, can make the useful visible white spectrum.

Acknowledgments

This work was financially supported by Innovation Program of Shanghai Municipal Education Commission (10YZ70, 09ZZ136), Science Foundation of Shanghai Normal University (SK201002), Shanghai Science and Technology Development Fund (Nos. 09520500500, 11ZR1426500) and the Key Laboratory of Resource Chemistry of Ministry of Education of China.

References

- [1] F. Kellendonk, T. Van den Belt, G. Blasse, J. Chem. Phys. 76 (1982) 1194.
- [2] M. Ilmer, B. Grabmaier, G. Blasse, Chem. Mater. 6 (1994) 204–206.
- [3] A. Srivastava, Mater. Res. Bull. 37 (2002) 745-751.
- [4] E. Oomen, G. Blasse, J. Solid State Chem. 75 (1988) 201–204.
- [5] J. Bao, S. Zhou, G. Feng, X. Wang, X. Qiao, J. Qiu, J. Alloys Compd. 456 (2008) 239–242.
- [6] W. Minquan, F. Xianping, X. Guohong, J. Phys. Chem. Solids 56 (1995) 859-862.
- [7] S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, J. Qiu, Adv. Funct. Mater. 18 (2008) 1407–1413.
- [8] M. Peng, L. Wondraczek, Opt. Lett. 34 (2009) 2885-2887.
- [9] H.T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, S. Deki, Adv. Mater. 21 (2009) 3694–3698.
- [10] M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, J. Non-Cryst. Solids (2010).
- (2010). 11] G. Blasse, A. Bril, J. Chem. Phys. 47 (1967) 1920–1926.
- [12] P. Zhiwu, S. Qiang Zhang, Solid State Commun. 86 (1993) 377–380.
- [13] W.J. Park, M.K. Jung, S.J. Im, D.H. Yoon, Colloids Surf. A 313–314 (2008) 373–377.
- [14] G. Blasse, C. Timmermans, J. Solid State Chem. 52 (1984) 222–232.
- [15] V. Dotsenko, N. Efryushina, I. Berezovskaya, Mater. Lett. 28 (1996) 517-520.
- [16] X. Xiao, B. Yan, J. Alloys Compd. 421 (2006) 252-257.
- [17] A. Huignard, T. Gacoin, J.-P. Boilot, Chem. Mater. 12 (2000) 1090–1094.
- [18] A.K. Levine, F.C. Palilla, Appl. Phys. Lett. 5 (1964) 118–120.
- [19] Z. Xia, D. Chen, M. Yang, T. Ying, J. Phys. Chem. Solids 71 (2010) 175–180.
- [20] V. Natarajan, A.R. Dhobale, C.-H. Lu, J. Lumin. 129 (2009) 290–293. [21] W.J. Park, M.K. Jung, D.H. Yoon, Sens. Actuators B: Chem. 126 (2007) 324–327.
- [22] J. Qiu, K. Miura, N. Sugimoto, K. Hirao, J. Non-Cryst. Solids 213–214 (1997) 266–270.
- [23] L. Cheng, H. Zhong, J. Sun, X. Zhang, Y. Peng, T. Yu, X. Zhao, J. Rare Earths 26 (2008) 211–214.